Difference between revisions of "Stata Coding Practices"
Line 9: | Line 9: | ||
=== iefieldkit === | === iefieldkit === | ||
<code>[[iefieldkit]]</code> is a Stata package developed by DIME for primary data collection. The package currently supports three major components of that workflow: survey design; survey completion; and data cleaning and survey harmonization. <code>iefieldkit</code> performs the following three tasks: | <code>[[iefieldkit]]</code> is a Stata package developed by DIME for primary data collection. The package currently supports three major components of that workflow: survey design; survey completion; and data cleaning and survey harmonization. <code>iefieldkit</code> performs the following three tasks: | ||
*Before data collection , <code>[[ietestform]]</code> complements ODK syntax test on [[SurveyCTO Coding Practices | SurveyCTO]] server. It runs tests to inform researchers how to use ODK programming language features to ensure high data quality. This command is especially useful if the data that will be imported to Stata has other restrictions in addition to ODK syntax. | *Before data collection , <code>[[ietestform]]</code> complements the ODK syntax test on [[SurveyCTO Coding Practices | SurveyCTO]] server. It runs tests to inform researchers how to use ODK programming language features to ensure high data quality. This command is especially useful if the data that will be imported to Stata has other restrictions in addition to ODK syntax. | ||
*During data collection, <code>[[ieduplicates]]</code> and <code>iecompdup</code> (both previously released as a part of the package ietoolkit but now moved to this package) provide a workflow for detecting and resolving duplicate entries in the dataset. This ensures that the final survey dataset is a correct record of the survey sample that the researcher can then merge into the master sampling database. | *During data collection, <code>[[ieduplicates]]</code> and <code>iecompdup</code> (both previously released as a part of the package ietoolkit but now moved to this package) provide a workflow for detecting and resolving duplicate entries in the dataset. This ensures that the final survey dataset is a correct record of the survey sample that the researcher can then merge into the master sampling database. | ||
*After data collection, <code>[[iecodebook]]</code> provides a workflow for rapidly cleaning, harmonizing, and documenting datasets. <code>iecodebook</code> uses input specified in an Excel sheet, which provides a much more well-structured and easy to follow (especially for non-technical users) overview than the same operations written directly to a dofile. | *After data collection, <code>[[iecodebook]]</code> provides a workflow for rapidly cleaning, harmonizing, and documenting datasets. <code>iecodebook</code> uses input specified in an Excel sheet, which provides a much more well-structured and easy to follow (especially for non-technical users) overview than the same operations written directly to a dofile. | ||
Line 22: | Line 22: | ||
Its commands for data analysis currently include <code>[[iematch]]</code>, an algorithm for matching observations in one group to "the most similar" observations in another group; <code>[[iebaltab]]</code>, which runs balance test regressions and outputs the result in well formatted balance tables; <code>[[iedropone]]</code>, which drops observations and controls that the correct number was dropped; <code>[[ieboilsave]]</code>, which performs checks before saving a data set; <code>[[ieddtab]]</code>, which runs [[Difference-in-Differences | difference in differences]] regressions and outputs the result in well formatted tables; and <code>[[iegraph]]</code>, which produces graphs of estimation results in common impact evaluation regression models | Its commands for data analysis currently include <code>[[iematch]]</code>, an algorithm for matching observations in one group to "the most similar" observations in another group; <code>[[iebaltab]]</code>, which runs balance test regressions and outputs the result in well formatted balance tables; <code>[[iedropone]]</code>, which drops observations and controls that the correct number was dropped; <code>[[ieboilsave]]</code>, which performs checks before saving a data set; <code>[[ieddtab]]</code>, which runs [[Difference-in-Differences | difference in differences]] regressions and outputs the result in well formatted tables; and <code>[[iegraph]]</code>, which produces graphs of estimation results in common impact evaluation regression models | ||
To install the <code>ietoolkit</code>, type <code>ssc install ietoolkit</code> in your Stata command window. For more details, see the [https://worldbank.github.io/ietoolkit/ <code>ietoolkit</code> GitHub page]. | To install the <code>ietoolkit</code>, type <code>ssc install ietoolkit</code> in your Stata command window. For more details, see the [https://worldbank.github.io/ietoolkit/ <code>ietoolkit</code> GitHub page]. | ||
== Command Repository == | == Command Repository == |
Revision as of 18:24, 14 May 2019
Stata is used in all stages of an impact evaluation: sampling, randomizing, monitoring, cleaning, and analyzing. Good Stata coding practices, packages, and commands are not only a critical component of high quality, reproducible research, but they are also key in saving the research team time, energy, and sanity. This page outlines a number of packages and commands developed by DIME and externally for use in impact evaluations. For additional resources on Stata coding, see Additional Resources.
Read First
- point1
- point2
Packages for Impact Evaluations
iefieldkit
iefieldkit
is a Stata package developed by DIME for primary data collection. The package currently supports three major components of that workflow: survey design; survey completion; and data cleaning and survey harmonization. iefieldkit
performs the following three tasks:
- Before data collection ,
ietestform
complements the ODK syntax test on SurveyCTO server. It runs tests to inform researchers how to use ODK programming language features to ensure high data quality. This command is especially useful if the data that will be imported to Stata has other restrictions in addition to ODK syntax. - During data collection,
ieduplicates
andiecompdup
(both previously released as a part of the package ietoolkit but now moved to this package) provide a workflow for detecting and resolving duplicate entries in the dataset. This ensures that the final survey dataset is a correct record of the survey sample that the researcher can then merge into the master sampling database. - After data collection,
iecodebook
provides a workflow for rapidly cleaning, harmonizing, and documenting datasets.iecodebook
uses input specified in an Excel sheet, which provides a much more well-structured and easy to follow (especially for non-technical users) overview than the same operations written directly to a dofile.
To install the package, type ssc install iefieldkit
in your Stata command window. Note that some features of the package might require meta data specific to SurveyCTO, but you free to try these commands on any use case. For more details, see the iefieldkit
GitHub page.
ietoolkit
ietoolkit
is a Stata package developed by DIME for data management and analysis in impact evaluations. The list of commands will be extended continuously, and suggestions for new commands are always appreciated.
ietoolkit
’s commands for data management currently include iefolder
, which sets up project folders and creates master do-files that link to all sub-folders; iegitaddmd
, which adds a placeholder file to empty folders so that folder structures with empty folders can be shared on GitHub; and ieboilstart
, which standardizes the boilerplate code at the top of all do-files.
Its commands for data analysis currently include iematch
, an algorithm for matching observations in one group to "the most similar" observations in another group; iebaltab
, which runs balance test regressions and outputs the result in well formatted balance tables; iedropone
, which drops observations and controls that the correct number was dropped; ieboilsave
, which performs checks before saving a data set; ieddtab
, which runs difference in differences regressions and outputs the result in well formatted tables; and iegraph
, which produces graphs of estimation results in common impact evaluation regression models
To install the ietoolkit
, type ssc install ietoolkit
in your Stata command window. For more details, see the ietoolkit
GitHub page.
Command Repository
You can find a broad variety of Stata commands in this repository, which contains ado files for commands useful for data management, statistical analysis, and the production of graphics. In many cases, these adofiles reduce the production of routine items from a tedious programming task to a single command line (i.e. data import and cleaning; production of summary statistics Cheklist: Submit Table tables; and categorical bar charts with confidence intervals.
- DIME Analytics’ Intro to how to write programs (also called commands or functions) in Stata and Share functions (sub-programs) between command in the same package are easy to experiment with and can be built on to fit many different contexts. Download the files and read the instuctions.
- This DIME Analytics repository hosts Stata Graph examples on GitHub. Feel free to submit your own example codes there.
- World Bank stata github https://worldbank.github.io/stata/
Additional Resources
PROGRAMS
- Stata modules for data collection and analysis developed by Innovations for Poverty Action
- odkmeta command developed by Innovations for Poverty Action
- More on
iefolder
in DIME Analytics’ presentation
GENERAL CODING
https://github.com/worldbank/DIME-Resources/blob/master/stata1-2-coding.pdf
https://github.com/worldbank/DIME-Resources/blob/master/stata1-3-cleaning.pdf
- Stata cheat sheets on GitHub
https://www.povertyactionlab.org/sites/default/files/resources/IAPStataWorkshopSlides.pdf https://www.princeton.edu/~otorres/StataTutorial.pdf https://web.stanford.edu/~leinav/teaching/econ257/STATA.pdf