Difference between revisions of "Power Calculations in Stata"
Maria jones (talk | contribs) |
Maria jones (talk | contribs) |
||
Line 56: | Line 56: | ||
Quick Reference on options: | Quick Reference on options: | ||
[File:Power_Calcs_in_Stata_Quick_Reference.png] | [[File:Power_Calcs_in_Stata_Quick_Reference.png]] | ||
Revision as of 18:26, 7 February 2017
NOTE: this article is only a template. Please add content!
add introductory 1-2 sentences here
Read First
- include here key points you want to make sure all readers understand
Guidelines
What data do I need?
You must have:
- Mean and variance for outcome variable for your population
- Typically can assume mean and SD are the same for treatment and control groups if randomized
- Sample size (assuming you are calculating MDES (δ))
- If individual randomization, number of people/units (n)
- If clustered, number of clusters (k), number of units per cluster (m), intracluster correlation (ICC, ρ) and ideally, variation of cluster size
- The following standard conventions
- Significance level (α) = 0.05
- Power = 0.80 (i.e. probability of type II error (β) = 0.20
Ideally, you will also have:
- Baseline correlation of outcome with covariates
- Covariates (individual and/or cluster level) reduce the residual variance of the outcome variable, leading to lower required sample sizes
- Reducing individual level residual variance is akin to increasing # obs per cluster (bigger effect if ICC low)
- Reducing cluster level residual variance is akin to increasing # of clusters (bigger effect if ICC and m high)
- If you have baseline data, this is easy to obtain
- Including baseline autocorrelation will improve power (keep only time invariant portion of variance)
- Covariates (individual and/or cluster level) reduce the residual variance of the outcome variable, leading to lower required sample sizes
- Number of follow-up surveys
- Autocorrelation of outcome between FUP rounds
How do I get this data?
You will basically never have the data you need for your exact population of interest at the time when you first do power calculations.
You will need to use the best available data to estimate values for each parameter. Sources to consider:
- High-quality nationally representative survey (e.g. LSMS)
- Data from DIME IE in same country (or region, if pressed)
- Review the literature – especially published papers on the sector and country. What kind of effects? Summary stats available?
If you can’t come up with a specific value you feel very confident in, run a few different power calculations with alternate assumptions and create bounded estimates.
Stata Command Options
Quick Reference on options:
power
sampsi
clsampsi
clustersampsi
rdpower
Back to Parent
This article is part of the topic Sampling & Power Calculations
Additional Resources
- list here other articles related to this topic, with a brief description and link