Difference between revisions of "List Experiments"

Jump to: navigation, search
Line 9: Line 9:
 
== Guidelines ==
 
== Guidelines ==
  
===Subsection 1===
+
=== What is a list experiment? ===
===Subsection 2===
+
=== When should I use a list experiment? ===
 
=== Should I do a list experiment? ===
 
=== Should I do a list experiment? ===
 
* Thoughts from Andrew Gelman, Macartan Humphreys, Lynn Vavreck, Cyrus Samii, Simon Jackman, Brendan Nyhan on reasons to be sketpical: http://andrewgelman.com/2014/04/23/thinking-list-experiment-heres-list-reasons-think/  
 
* Thoughts from Andrew Gelman, Macartan Humphreys, Lynn Vavreck, Cyrus Samii, Simon Jackman, Brendan Nyhan on reasons to be sketpical: http://andrewgelman.com/2014/04/23/thinking-list-experiment-heres-list-reasons-think/  
Line 18: Line 18:
  
 
== Additional Resources ==
 
== Additional Resources ==
* Reasons ''not'' to do a list experiment: http://andrewgelman.com/2014/04/23/thinking-list-experiment-heres-list-reasons-think/
 
  
 
* Blair, Graeme, Kosuke Imai, and Jason Lyall. 2014. “Comparing And Combining List and Endorsement Experiments: Evidence from Afghanistan.” American Journal of Political Science 58(4): 1043–63.  
 
* Blair, Graeme, Kosuke Imai, and Jason Lyall. 2014. “Comparing And Combining List and Endorsement Experiments: Evidence from Afghanistan.” American Journal of Political Science 58(4): 1043–63.  

Revision as of 18:16, 6 February 2017

A technique to get around Social Desirability Bias, typically used when trying to measure Sensitive Topics


Read First

Guidelines

What is a list experiment?

When should I use a list experiment?

Should I do a list experiment?

Back to Parent

This article is part of the topic Questionnaire Design

Additional Resources

  • Blair, Graeme, Kosuke Imai, and Jason Lyall. 2014. “Comparing And Combining List and Endorsement Experiments: Evidence from Afghanistan.” American Journal of Political Science 58(4): 1043–63.

Abstract: List and endorsement experiments are becoming increasingly popular among social scientists as indirect survey techniques for sensitive questions. When studying issues such as racial prejudice and support for militant groups, these survey methodologies may improve the validity of measurements by reducing non-response and social desirability biases. We develop a statistical test and multivariate regression models for comparing and combining the results from list and endorsement experiments. We demonstrate that when carefully designed and analyzed, the two survey experiments can produce substantively similar empirical findings. Such agreement is shown to be possible even when these experiments are applied to one of the most challenging research environments: contemporary Afghanistan. We find that both experiments uncover similar patterns of support for the International Security Assistance Force among Pashtun respondents. Our findings suggest that multiple measurement strategies can enhance the credibility of empirical conclusions. Open-source software is available for implementing the proposed methods.

  • Blair, Graeme, and Kosuke Imai. 2012. “Statistical Analysis of List Experiments.” Political Analysis 20(1): 47–77.

Abstract: The validity of empirical research often relies upon the accuracy of self-reported behavior and beliefs. Yet eliciting truthful answers in surveys is challenging, especially when studying sensitive issues such as racial prejudice, corruption, and support for militant groups. List experiments have attracted much attention recently as a potential solution to this measurement problem. Many researchers, however, have used a simple difference-in-means estimator, which prevents the efficient examination of multivariate relationships between respondents’ characteristics and their responses to sensitive items. Moreover, no systematic means exists to investigate the role of underlying assumptions. We fill these gaps by developing a set of new statistical methods for list experiments. We identify the commonly invoked assumptions, propose new multivariate regression estimators, and develop methods to detect and adjust for potential violations of key assumptions. For empirical illustration, we analyze list experiments concerning racial prejudice. Open-source software is made available to implement the proposed methodology.