Quasi-Experimental Methods

Revision as of 19:07, 9 August 2023 by Zkevala (talk | contribs) (→‎Read First)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Quasi-experimental methods are research designs that that aim to identify the impact of a particular intervention, program, or event (a "treatment") by comparing treated units (households, groups, villages, schools, firms, etc.) to control units. While quasi-experimental methods use a control group, they differ from experimental methods in that they do not use randomization to select the control group. Quasi-experimental methods are useful for estimating the impact of a program or event for which it is not ethically or logistically feasible to randomize. This page outlines common types of quasi-experimental methods.

Read First


Like experimental methods, quasi-experimental methods aim to estimate program effects free of confoundedness, reverse causality or simultaneous causality. While quasi-experimental methods use a counterfactual, they differ from experimental methods in that they do not randomize treatment assignment. Instead, quasi-experimental methods exploit existing circumstances in which treatment assignment has a sufficient element of randomness, as in regression discontinuity design or event studies; or simulate an experimental counterfactual by constructing a control group as similar as possible to the treatment group, as in propensity score matching.

Assumptions and Limitations

In general, quasi-experimental methods require larger samples than experimental methods. Further, for quasi-experimental methods to provide valid and unbiased estimates of program impacts, researchers must make more assumptions about the control group than in experimental methods. For example, difference-in-differences relies on the equal trends assumption, while matching assumes identical unobserved characteristics between the treatment and control groups.

Additional Resources